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Convergent synthesis of the FGHI ring segment of yessotoxin
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Abstract—A convergent synthesis of the FGHI ring segment of yessotoxin was achieved via the intramolecular allylation of an
a-chloroacetoxy ether and subsequent ring-closing metathesis.
� 2005 Elsevier Ltd. All rights reserved.
Yessotoxin 1 is a disulfated polycyclic ether isolated
from the digestive glands of the scallops, Patinopecten
yessoensis.1 Due to its novel structural features and bio-
logical activities, yessotoxin has attracted the attention
of synthetic chemists.2 Recently, we developed an effi-
cient method for the convergent synthesis of polycyclic
ethers via the intramolecular allylation of an a-acetoxy
ether and subsequent ring-closing metathesis.3 The
methodology was successfully applied to the stereoselec-
tive synthesis of the A–F ring segment of 1.4 We now
wish to report the further application of this technology
to the synthesis of the FGHI ring system of 1.5

Scheme 1 shows the synthesis of the F ring fragment.
The olefin 2, synthesized by the reported procedure,6

was converted to alcohol 3 in 87% overall yield via
MPM protection followed by hydroboration–oxidation.
Protection of 3 with TBDPSCl and selective removal of
the MPM group afforded 4 in 96% overall yield.

The I ring moiety 6 was prepared from diol 57 by several
steps including acetalization with anisaldehyde, DIBAL-
H reduction, Swern oxidation of the resulting primary
alcohol, Wittig reaction, hydroboration–oxidation,
TEMPO oxidation, and NaClO2 oxidation of the result-
ing aldehyde (Scheme 2). Esterification of carboxylic
acid 6 with alcohol 4 was carried out under the Yama-
guchi conditions8 to provide ester 7. A series of reactions
including deprotection of the MPM ether of 7 with
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DDQ, acid catalyzed acetal formation with 8, and cleav-
age of the resulting methyl acetal with TMSI/HMDS
furnished the allylic stannane 9 in 78% overall yield.9

Modified Rychnovsky acetylation of 9 via DIBAL-H
reduction followed by treatment with (CH2ClCO)2O/
DMAP/pyridine gave a-chloroacetoxy ether 10 in 94%
yield.10,11 Intramolecular allylation of 10 with
MgBr2ÆOEt2 in CH3CN gave a 78:22 mixture of the
desired product 11 and its stereoisomer 12 in 99% com-
bined yield.

The next task was the construction of the G ring having a
methyl group. Wacker oxidation of 11 provided methyl
ketone 13 in 81% yield (Scheme 3). Desilylation of 13
with TBAF, oxidation of the resulting alcohol, and Wit-
tig olefination gave diene 14 in 90% overall yield. Ring-
closing metathesis of 14 was carried out using the second
generation Grubbs catalyst 15 to give 16 in 88% yield.12

Hydrogenation of 16 under standard conditions afforded
17 as the sole product in 52% yield. However, the stereo-
chemistry of the methyl group of the G ring was opposite
to that required. We attempted other conditions such as
the use of Pd(OH)2 and Crabtree�s catalyst13 in order to
obtain the desired stereochemistry of the Me group, but
all the approaches resulted in failure: the undesired ste-
reochemistry was always obtained.14

Finally, we found that the following method gave the
desired stereochemistry (Scheme 4). Treatment of 13
with KHMDS/PhNTf2

15 gave the corresponding enol
triflate, which was then subjected to palladium-catalyzed
reaction with CO/MeOH to provide ester 18 in 74%
overall yield.16,17 DIBAL-H reduction of 18 followed
by MPM protection gave 19 in 94% overall yield.
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Scheme 2. Reagents and conditions: (a) (i) anisaldehyde, PPTS, benzene, reflux; (ii) DIBAL-H, CH2Cl2, rt, 81%; (b) (COCl)2, DMSO, CH2Cl2,
�78 �C, then Et3N; (ii) CH3PPh3

+Br�, NaHMDS, THF, 0 �C; (iii) 9-BBN, THF, rt, then 3 N NaOH, 30% H2O2, 0 �C, 63%; (c) TEMPO, NaClO,
KBr, NaHCO3, CH2Cl2–H2O, 0 �C, (ii) NaClO2, 2-methyl-2-butene, NaH2PO4, t-BuOH–THF–H2O, 0 �C, quant; (d) 2,4,6-trichlorobenzoyl
chloride, Et3N, THF, rt, then 4, DMAP, toluene, rt, 88%; (e) DDQ, NaHCO3, CH2Cl2–H2O, rt, 96%; (f) 8, CSA, CH2Cl2, rt, 93%; (g) HMDS,
TMSI, CH2Cl2, 0 �C, 87%; (h) DIBAL-H, CH2Cl2, �78 �C, then (CH2ClCO)2O, pyridine, DMAP, �78 �C, 94%; (i) MgBr2ÆOEt2, CH3CN, 40 �C,
99% (11:12 = 78:22).
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Scheme 1. Reagents and conditions: (a) (i) MPMCl, KH, THF, 0 �C to rt; (ii) (c-Hex)2BH, THF, 0 �C, then 30% H2O2, 3 N NaOH, 0 �C, 87%; (b) (i)
TBDPSCl, imidazole, DMF, rt; (ii) DDQ, NaHCO3, CH2Cl2–H2O (10:1), rt, 96%.
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Hydroboration of 19 with BH3ÆSMe2 followed by oxida-
tive work-up furnished the corresponding alcohol 20 as
a single stereoisomer in 76% yield.18 Iodination of 20
with I2/PPh3/imidazole followed by lithiation with t-
BuLi and protonation with MeOH gave 21 in 86% over-
all yield.19 Deprotection of the MPM ether, oxidation of
the resulting alcohol, and Wittig reaction afforded 22 in
55% overall yield. Desilylation of 22 with TBAF, treat-
ment of the resulting alcohol with 2-nitrophenyl seleno-
cyanate/PBu3, and oxidative work-up gave diene 23 in
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Scheme 4. Reagents and conditions: (a) (i) PhNTf2, KHMDS, DMPU, THF, �78 �C; (ii) CO, MeOH, Pd(PPh3)4, DMF, rt, 74%; (b) (i) DIBAL-H,
CH2Cl2, �78 �C; (ii) MPMCl, KH, THF, rt, 94%; (c) BH3ÆSMe2, THF, 0 �C, then 3 N NaOH, 30% H2O2, 0 �C, 76%; (d) (i) I2, PPh3, imidazole,
benzene, rt; (ii) t-BuLi, THF, �78 �C, then MeOH, 86%; (e) DDQ, NaHCO3, CH2Cl2–H2O, rt, 84%; (f) (i) SO3Æpy, DMSO, Et3N, CH2Cl2, rt; (ii)
CH3PPh3

+Br�, NaHMDS, THF, 0 �C, 66%; (g) (i) TBAF, THF, rt; (ii) 2-nitrophenyl selenocyanate, PBu3, THF, rt, then, 30% H2O2, 90%; (h) 15,
toluene, 130 �C, sealed tube, 90% ; (i) 5% Pd–C, EtOAc, 98%.
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+Br�, NaHMDS, THF, 0 �C; 90%; (c) 15, CH2Cl2, rt, 88%; (d) H2, 10% Pd–C, EtOAc, rt, 52%.
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90% overall yield.20 Diene 23 was subjected to the ring-
closing metathesis using 15 to furnish 24 in 90% yield.
Finally, hydrogenation of 24 afforded the FGHI ring
segment 25 in 98% yield.21 The stereochemistry of the
methyl group was confirmed by NOE experiments.

In conclusion, we have achieved a convergent and
stereoselective synthesis of the FGHI ring segment of
yessotoxin 1 via the intramolecular allylation of an
a-chloroacetoxy ether and ring-closing metathesis.
Further studies toward the total synthesis of 1 are now
in progress in our laboratories.
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